Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Sci Rep ; 14(1): 9961, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693183

RESUMO

Ticks have a profound impact on public health. Haemaphysalis is one of the most widespread genera in Asia, including Japan. The taxonomy and genetic differentiation of Haemaphysalis spp. is challenging. For instance, previous studies struggled to distinguish Haemaphysalis japonica and Haemaphysalis megaspinosa due to the dearth of nucleotide sequence polymorphisms in widely used barcoding genes. The classification of H. japonica japonica and its related sub-species Haemaphysalis japonica douglasi or Haemaphysalis jezoensis is also confused due to their high morphological similarity and a lack of molecular data that support the current classification. We used mitogenomes and microbiomes of H. japonica and H. megaspinosa to gain deeper insights into the phylogenetic relationships and genetic divergence between two species. Phylogenetic analyses of concatenated nucleotide sequences of protein-coding genes and ribosomal DNA genes distinguished H. japonica and H. megaspinosa as monophyletic clades, with further subdivision within the H. japonica clade. The 16S rRNA and NAD5 genes were valuable markers for distinguishing H. japonica and H. megaspinosa. Population genetic structure analyses indicated that genetic variation within populations accounted for a large proportion of the total variation compared to variation between populations. Microbiome analyses revealed differences in alpha and beta diversity between H. japonica and H. megaspinosa: H. japonica had the higher diversity. Coxiella sp., a likely endosymbiont, was found in both Haemaphysalis species. The abundance profiles of likely endosymbionts, pathogens, and commensals differed between H. japonica and H. megaspinosa: H. megaspinosa was more diverse.


Assuntos
Ixodidae , Microbiota , Filogenia , RNA Ribossômico 16S , Animais , Ixodidae/microbiologia , Ixodidae/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Genoma Mitocondrial , Variação Genética
2.
Int J Parasitol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38609074

RESUMO

The tropical brown dog tick, Rhipicephalus linnaei, is a tick of much medical, veterinary, and zoonotic importance. This tick has a nearly world-wide distribution due to its ability to survive and propagate in kennels and houses. Rhipicephalus linnaei is the vector of Ehrlichia canis, the causative agent of canine monocytic ehrlichiosis, an often debilitating disease of canids and, occasionally, humans. To prevent incursion of E. canis into Australia, dogs entering Australia have been required to have a negative immunofluorescence antibody test for E. canis. In May 2020 however, E. canis was detected in Western Australia. The detection of E. canis in Australia prompted disease investigation and concerted surveillance for R. linnaei and E. canis in regions across Australia. These investigations revealed that R. linnaei was established far beyond the previously recognised geographic range limits of this tick. In the present paper, using records from various collections, published data, and data from our network of veterinarian collaborators and colleagues, we update the current geographic range of R. linnaei in Australia. Our analyses revealed that the geographic range of R. linnaei in Australia is much wider than was previously supposed, particularly in Western Australia, and in South Australia. We also map, for the first time, where E. canis has been detected in Australia. Last, we discuss the possible routes of incursion and subsequently the factors which may have aided the spread of E. canis in Australia which led to the establishment of this pathogen in Australia.

3.
Parasit Vectors ; 17(1): 139, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500136

RESUMO

BACKGROUND: Amblyomma is the third most diversified genus of Ixodidae that is distributed across the Indomalayan, Afrotropical, Australasian (IAA), Nearctic and Neotropical biogeographic ecoregions, reaching in the Neotropic its highest diversity. There have been hints in previously published phylogenetic trees from mitochondrial genome, nuclear rRNA, from combinations of both and morphology that the Australasian Amblyomma or the Australasian Amblyomma plus the Amblyomma species from the southern cone of South America, might be sister-group to the Amblyomma of the rest of the world. However, a stable phylogenetic framework of Amblyomma for a better understanding of the biogeographic patterns underpinning its diversification is lacking. METHODS: We used genomic techniques to sequence complete and nearly complete mitochondrial genomes -ca. 15 kbp- as well as the nuclear ribosomal cluster -ca. 8 kbp- for 17 Amblyomma ticks in order to study the phylogeny and biogeographic pattern of the genus Amblyomma, with particular emphasis on the Neotropical region. The new genomic information generated here together with genomic information available on 43 ticks (22 other Amblyomma species and 21 other hard ticks-as outgroup-) were used to perform probabilistic methods of phylogenetic and biogeographic inferences and time-tree estimation using biogeographic dates. RESULTS: In the present paper, we present the strongest evidence yet that Australasian Amblyomma may indeed be the sister-group to the Amblyomma of the rest of the world (species that occur mainly in the Neotropical and Afrotropical zoogeographic regions). Our results showed that all Amblyomma subgenera (Cernyomma, Anastosiella, Xiphiastor, Adenopleura, Aponomma and Dermiomma) are not monophyletic, except for Walkeriana and Amblyomma. Likewise, our best biogeographic scenario supports the origin of Amblyomma and its posterior diversification in the southern hemisphere at 47.8 and 36.8 Mya, respectively. This diversification could be associated with the end of the connection of Australasia and Neotropical ecoregions by the Antarctic land bridge. Also, the biogeographic analyses let us see the colonization patterns of some neotropical Amblyomma species to the Nearctic. CONCLUSIONS: We found strong evidence that the main theater of diversification of Amblyomma was the southern hemisphere, potentially driven by the Antarctic Bridge's intermittent connection in the late Eocene. In addition, the subgeneric classification of Amblyomma lacks evolutionary support. Future studies using denser taxonomic sampling may lead to new findings on the phylogenetic relationships and biogeographic history of Amblyomma genus.


Assuntos
Genoma Mitocondrial , Ixodidae , Carrapatos , Animais , Ixodidae/genética , Filogenia , Amblyomma
4.
Acta Trop ; 254: 107197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554993

RESUMO

Dermacentor (Indocentor) auratus Supino, 1897 occurs in many regions of Southeast Asia and South Asia. In many regions of Southeast Asia and South Asia, targeted tick sampling and subsequent screening of collected D. auratus ticks have detected pathogenic bacteria and viruses in D. auratus. These disease-causing pathogens that have been detected in D. auratus include Anaplasma, Bartonella, Borrelia, Rickettsia (including spotted fever group rickettsiae), African swine fever virus, Lanjan virus, and Kyasanur forest disease virus. Although D. auratus predominantly infests wild pigs, this tick is also an occasional parasite of humans and other animals. Indeed, some 91 % of human otoacariasis cases in Sri Lanka were due to infestation by D. auratus. With the propensity of this tick to feed on multiple species of hosts, including humans, and the detection of pathogenic bacteria and viruses from this tick, D. auratus is a tick of medical, veterinary, and indeed zoonotic concern. The geographic range of this tick, however, is not well known. Therefore, in the present paper, we used the species distribution model, BIOCLIM, to project the potential geographic range of D. auratus, which may aid pathogen and tick-vector surveillance. We showed that the potential geographic range of D. auratus is far wider than the current geographic distribution of this tick, and that regions in Africa, and in North and South America seem to have suitable climates for D. auratus. Interestingly, in Southeast Asia, Borneo and Philippines also have suitable climates for D. auratus, but D. auratus has not been found in these regions yet despite the apparent close proximity of these regions to Mainland Southeast Asia, where D. auratus occurs. We thus hypothesize that the geographic distribution of D. auratus is largely dependent on the movement of wild pigs and whether or not these wild pigs are able to overcome dispersal barriers. We also review the potential pathogens and the diseases that may be associated with D. auratus and provide an updated host index for this tick.


Assuntos
Dermacentor , Animais , Dermacentor/microbiologia , Dermacentor/virologia , Humanos , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/virologia , Suínos , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia , Sudeste Asiático/epidemiologia , Rickettsia/isolamento & purificação , Rickettsia/classificação , Ásia , Zoonoses/parasitologia
5.
Med Vet Entomol ; 38(2): 189-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469668

RESUMO

We used entire mitochondrial (mt) genome sequences (14.5-15 kbp) to resolve the phylogeny of the four main lineages of the Haematobothrion ticks: Alloceraea, Archaeocroton, Bothriocroton and Haemaphysalis. In our phylogenetic trees, Alloceraea was the sister to Archaeocroton sphenodonti, a tick of an archetypal reptile, the tuatara, from New Zealand, to the exclusion of the rest of the species of Haemaphysalis. The mt genomes of all four of the Alloceraea species that have been sequenced so far had a substantial insert, 132-312 bp, between the tRNA-Glu (E) gene and the nad1 gene in their mt genomes. This insert was not found in any of the other eight subgenera of Haemaphysalis. The mt genomes of 13 species of Haemaphysalis from NCBI GenBank were added to the most recent data set on Haemaphysalis and its close relatives to help resolve the phylogeny of Haemaphysalis, including five new subgenera of Haemaphysalis not previously considered by other authors: Allophysalis (structurally primitive), Aboimisalis (structurally primitive), Herpetobia (structurally intermediate), Ornithophysalis (structurally advanced) and Segalia (structurally advanced). We elevated Alloceraea Schulze, 1919 to the status of genus because Alloceraea Schulze, 1919 is phylogenetically distinct from the other subgenera of Haemaphysalis. Moreover, we propose that the subgenus Allophysalis is the sister to the rest of the Haemaphysalis (14 subgenera) and that the 'structurally primitive' subgenera Hoogstraal and Kim comprise early diverging lineages. Our matrices of the pairwise genetic difference (percent) of mt genomes and partial 16S rRNA sequences indicated that the mt genome sequence of Al. kitaokai (gb# OM368280) may not be Al. kitaokai Hoogstraal, 1969 but rather another species of Alloceraea. In a similar way, the mt genome sequence of H. (Herpetobia) nepalensis Hoogstraal, 1962 (gb# NC_064124) was only 2% genetically different to that of H. (Allophysalis) tibetensis Hoogstraal, 1965 (gb# OM368293): this indicates to us that they are the same species. Alloceraea cretacea may be better placed in a genus other than Alloceraea Schulze, 1919. Reptiles may have been the host to the most recent common ancestor of Archaeocroton and Alloceraea.


Assuntos
Genoma Mitocondrial , Ixodidae , Filogenia , Animais , Ixodidae/genética , Ixodidae/classificação
6.
Zootaxa ; 5410(1): 91-111, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480255

RESUMO

We describe a new genus Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914, a tick of North Queensland, Australia, and Papua New Guinea.


Assuntos
Carrapatos , Animais , Queensland , Amblyomma , Papua Nova Guiné , Austrália
7.
Zootaxa ; 5253(1): 1-670, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37044756

RESUMO

The present work is an update and a substantial expansion of Barker & Walker (2014). Barker & Walker (2014) dealt with 16 species of particular importance to domestic animals and humans whereas the present work deals with all 125 of the species known from Australasia; that is Australia, New Zealand, the island of New Guinea, Sulawesi, and the islands of the western Pacific. These comprise 102 species of ixodid (hard) ticks and 23 species of argasid (soft) ticks.


Assuntos
Argasidae , Ixodidae , Carrapatos , Animais , Humanos , Animais Domésticos , Austrália , Australásia
8.
Int J Parasitol ; 53(1): 43-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462559

RESUMO

We studied 22,840 cases of tick paralysis in dogs and cats that were attributable to infestation with the eastern paralysis tick, Ixodes holocyclus. We report that the mortality rates from the holocyclotoxins of the tick or from euthanasia due to complications arising from tick paralysis in dogs and cats were 10% and 8%, respectively. The distribution of cases of tick paralysis among the 52 weeks of 22 years (1999 to 2020, inclusive) in four regions along the eastern coast of Australia revealed much about how the life-cycle of this tick varied among regions. The four regions in our study were: (i) Cairns, Innisfail, and surrounding postcodes in Far North Queensland; (ii) South East Queensland; (iii) Northern Beaches of Sydney in New South Wales; and (iv) the Shire of East Gippsland in Victoria. We found that the season of tick paralysis started earlier in more northerly latitudes than in more southerly latitudes. We also found that Victoria has two seasons of tick paralysis, one from approximately the third week of February to the first week of May, and another from approximately the third week of September to the third week of December, whereas all of the other regions we studied in eastern Australia only had one season of tick paralysis. When we studied the two seasons of tick paralysis in Victoria, we found a statistically significant negative correlation between the number of cases of tick paralysis between the two seasons: the more cases in one season, the fewer the cases in the next season. One possible explanation for the negative correlation may be immunity to I. holocyclus acquired by dogs and cats in the first season.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodes , Paralisia por Carrapato , Gatos , Animais , Cães , New South Wales/epidemiologia , Vitória , Queensland/epidemiologia , Estações do Ano , Paralisia por Carrapato/epidemiologia , Paralisia por Carrapato/veterinária , Doenças do Cão/epidemiologia
9.
Ticks Tick Borne Dis ; 14(2): 102070, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36455382

RESUMO

Hoogstraal and Kim (1985) proposed from morphology, three groups of Haemaphysalis subgenera: (i) the "structurally advanced"; (ii) the "structurally intermediate"; and (iii) the "structurally primitive" subgenera. Nuclear gene phylogenies, however, did not indicate monophyly of these morphological groups but alas, only two mitochondrial (mt) genomes from the "structurally intermediate" subgenera had been sequenced. The phylogeny of Haemaphysalis has not yet been resolved. We aimed to resolve the phylogeny of the genus Haemaphysalis, with respect to the subgenus Alloceraea. We presented 15 newly sequenced and annotated mt genomes from 15 species of ticks, five species of which have not been sequenced before, and four new 18S rRNA and 28S rRNA nuclear gene sequences. Our datasets were constructed from 10 mt protein-coding genes, cox1, and the 18S and 28S nuclear rRNA genes. We found a 132-bp insertion between tRNA-Glu (E) gene and the nad1 gene in the mt genome of Haemaphysalis (Alloceraea) inermis that resembles insertions in H. (Alloceraea) kitaokai and Rhipicephalus (Boophilus) geigyi. Our mt phylogenies had the three species of Amblyomma (Aponomma) we sequenced embedded in the main clade of Amblyomma: Am. (Aponomma) fimbriatum, Am. (Aponomma) gervaisi and Am. (Aponomma) latum. This is further support for the hypothesis that the evolution of eyes appears to have occurred in the most-recent-common-ancestor of Amblyocephalus (i.e. Amblyomminae plus Rhipicephalinae) and that eyes were subsequently lost in the most-recent-common-ancestor of the subgenus Am. (Aponomma). Either Africaniella transversale or Robertsicus elaphensis, or perhaps Af. transversale plus Ro. elaphensis, appear to be the sister-group to the rest of the metastriate Ixodida. Our cox1 phylogenies did not indicate monophyly of the "structurally primitive", "structurally intermediate" nor the "structurally advanced" groups of Haemaphysalis subgenera. Indeed, the subgenus Alloceraea may be the only monophyletic subgenus of the genus Haemaphysalis sequenced thus far. All of our mt genome and cox1 phylogenies had the subgenus Alloceraea in a clade that was separate from the rest of the Haemaphysalis ticks. If Alloceraea is indeed the sister to the rest of the Haemaphysalis subgenera this would resonate with the argument of Hoogstraal and Kim (1985), that Alloceraea was a subgenus of "primitive" Haemaphysalis. Alectorobius capensis from Japan had a higher genetic-identity to A. sawaii, which was also from Japan, than to the A. capensis from South Africa. This indicates that A. capensis from Japan may be a cryptic species with respect to the A. capensis from South Africa.


Assuntos
Genoma Mitocondrial , Ixodidae , Rhipicephalus , Animais , Ixodidae/genética , Filogenia , Genes de RNAr , Rhipicephalus/genética , Amblyomma/genética
10.
Zootaxa ; 5325(4): 529-540, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38220895

RESUMO

A new subgenus, Australixodes n. subgen., is described for the kiwi tick, Ixodes anatis Chilton, 1904. The subgenus Coxixodes Schulze, 1941 is validated for the platypus tick, Ixodes (Coxixodes) ornithorhynchi Lucas, 1846, sister group of the subgenus Endopalpiger Schulze, 1935. A phylogeny from mitochondrial genomes of 16 of the 22 subgenera of Ixodes (32 spp.) indicates, for the first time, the relationships of the subgenera of Ixodes Latreille, 1795, the largest genus of ticks.


Assuntos
Genoma Mitocondrial , Ixodes , Ixodidae , Animais , Ixodes/genética , Ixodidae/genética , Filogenia
11.
Zootaxa ; 5173(1): 1-73, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36095415

RESUMO

Ixodes brevisetosus n. sp. from Papua New Guinea, Ixodes contrarius n. sp. from Costa Rica, Ixodes guglielmonei n. sp. from Argentina and Chile, Ixodes insulae n. sp. from Australia, Ixodes moralesi n. sp. from Guatemala and Panama, Ixodes rio n. sp. from Brazil, Ixodes robbinsi n. sp. from Canada and the United States and Ixodes tinamou n. sp. from Peru (Acari: Ixodidae) are described based on females, nymphs and larvae from various avian hosts (Charadriiformes: Charadriidae; Falconiformes: Falconidae; Galliformes: Cracidae, Odontophoridae, Phasianidae; Passeriformes: Acanthizidae, Cardinalidae, Emberizidae, Fringillidae, Furnariidae, Melanocharitidae, Orthonychidae, Paridae, Passeridae, Petroicidae, Thamnophilidae, Troglodytidae, Turdidae; Strigiformes: Strigidae; Tinamiformes: Tinamidae) and a rodent (Rodentia: Muridae). Females, nymphs and larvae of all new species are similar to those of Ixodes auritulus Neumann, 1904, but can be distinguished by the shape of the scutum and basis capituli, relative length of idiosomal setae, auriculae and internal projection on palpal segment I, degree of development of dorsoapical and mesodorsal spurs on palpal segment I, and measurements and proportions of various structures. Females, nymphs and larvae of I. auritulus s. str. are redescribed based on specimens from passerine birds (Furnariidae, Troglodytidae, Turdidae) in Chile. The subspecies I. auritulus zealandicus Dumbleton, 1961 is elevated to species status, Ixodes zealandicus Dumbleton, 1961. Based on our extensive survey and morphological analyses, we evaluate the actual species richness in the I. auritulus species group and discuss future directions in the systematics of this group of ticks.


Assuntos
Ixodes , Ixodidae , Parasitos , Passeriformes , Aves Canoras , Animais , Feminino , Ixodes/anatomia & histologia , Larva , Ninfa , Roedores
12.
Evol Appl ; 15(7): 1062-1078, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35899249

RESUMO

Ticks are the second most important vector capable of transmitting diseases affecting the health of both humans and animals. Amblyomma testudinarium Koch 1844 (Acari: Ixodidae), is a hard tick species having a wide geographic distribution in Asia. In this study, we analyzed the composition of A. testudinarium whole mitogenomes from various geographical regions in Japan and investigated the population structure, demographic patterns, and phylogeographic relationship with other ixodid species. In addition, we characterized a potentially novel tick species closely related to A. testudinarium from Myanmar. Phylogeographic inference and evolutionary dynamics based on the 15 mitochondrial coding genes supported that A. testudinarium population in Japan is resolved into a star-like haplogroup and suggested a distinct population structure of A. testudinarium from Amami island in Kyushu region. Correlation analysis using Mantel test statistics showed that no significant correlation was observed between the genetic and geographic distances calculated between the A. testudinarium population from different localities in Japan. Finally, demographic analyses, including mismatch analysis and Tajima's D test, suggested a possibility of recent population expansion occurred within Japanese haplogroup after a bottleneck event. Although A. testudinarium has been considered widespread and common in East and Southeast Asia, the current study suggested that potentially several cryptic Amblyomma spp. closely related to A. testudinarium are present in Asia.

13.
Parasit Vectors ; 15(1): 117, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365195

RESUMO

BACKGROUND: Ixodes barkeri, a tick with a distinctive ventrolateral horn-like projection on palpal segment 1, was described in 2019 from two male ticks from the Wet Tropics of Far North Queensland, Australia. However, females lie at the core of the taxonomy and subgenus classification of Ixodes; hence, we sought specimens of female ticks, successfully recovering females, plus nymphs and larvae. Mitochondrial genomes are also desirable additions to the descriptions of species of ticks particularly regarding subgenus systematics. So, we sequenced the mt genomes of I. barkeri Barker, 2019, and the possible relatives of I. barkeri that were available to us (I. australiensis Neumann, 1904, I. fecialis Warburton & Nuttall, 1909, and I. woyliei Ash et al. 2017) with a view to discovering which if any of the subgenera of Ixodes would be most suitable for I. barkeri Barker, 2019. RESULTS: The female, nymph, larva and mitochondrial genome of Ixodes barkeri Barker, 2019, are described for the first time and the male of I. barkeri is redescribed in greater detail than previously. So far, I. barkeri is known only from a monotreme, the short-beaked echidna, Tachyglossus aculeatus (Shaw, 1792), from the highland rainforests of the Wet Tropics of Far North Queensland, Australia. CONCLUSIONS: Our phylogeny from entire mitochondrial genomes indicated that I. barkeri and indeed I. woyliei Ash et al., 2017, another tick that was described recently, are best placed in the subgenus Endopalpiger Schulze, 1935.


Assuntos
Genoma Mitocondrial , Ixodes , Ixodidae , Tachyglossidae , Animais , Feminino , Ixodes/genética , Ixodidae/genética , Larva/genética , Masculino , Ninfa/genética
14.
Int J Parasitol Parasites Wildl ; 18: 1-11, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35371916

RESUMO

We: (i) report the rediscovery of Ixodes (Sternalixodes) confusus Roberts, 1960 in Australia; (ii) redescribe the male and female of I. confusus; (iii) describe the mitochondrial (mt) genome of I. confusus from five ticks from four localities in Far North Queensland; and (iv) present the first substantial phylogeny of the subgenera of the Ixodes. The mt genomes of I. confusus, I. cornuatus, I. hirsti, I. myrmecobii and I. trichosuri are presented here for the first time. In our phylogeny from entire mt genomes (ca. 15 kb), the subgenus Endopalpiger was the sister-group to subgenera Sternalixodes plus Ceratixodes plus Exopalpiger whereas Exopalpiger was the sister to Sternalixodes plus Ceratixodes. [i.e. ((Endopalpiger) (Sternalixodes, Ceratixodes and Exopalpiger))]. Finally, we show that Ixodes anatis, the kiwi tick, may be closely related to the ticks of marsupials of Australia and Papua New Guinea.

15.
Ticks Tick Borne Dis ; 13(1): 101832, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607157

RESUMO

High-throughput sequencing (HTS) technology has profoundly been involved in sequencing whole genomes of several organisms in a fast and cost-effective manner. Although HTS provides an alternative biomonitoring method to the time-consuming and taxonomy-expertise dependent morphological approach, still we cannot rule out the possibility of the impediment and misidentification biases. In this article we aim to retrieve whole mitochondrial genome (mitogenome) sequences from publicly available raw sequencing data for phylogenetic comparison of Ixodes persulcatus. For this comparison, we sequenced whole mitogenomes of four I. persulcatus ticks from Japan and constructed mitogenomes from raw sequencing data of 74 I. persulcatus ticks from China. Bayesian phylogenetic trees were inferred by the concatenated fifteen mitochondrial genes. We further tested our results by the phylogenetic analysis of cytochrome c oxidase subunit 1 (cox1) gene and internal transcribed spacer 2 (ITS2) sequences. Our findings showed that 70 constructed mitogenomes from China were clustered with the sequenced four mitogenomes of I. persulcatus from Japan. We also revealed that mitogenome sequences retrieved from two data sets CRR142297 and CRR142298 were clustered with Ixodes nipponensis. Moreover, other two mitogenome sequences from CRR142310 and CRR142311 formed a clade with Ixodes pavlovskyi. The phylogenetic analysis of cox1 gene and ITS2 sequences confirmed the identification errors of these four samples. The overall phylogenetics in our study concluded that accurate morphological identification is necessary before implementing HTS to avoid any misidentification biases.


Assuntos
Genoma Mitocondrial , Ixodes , Animais , Teorema de Bayes , China , Filogenia
16.
Ticks Tick Borne Dis ; 12(5): 101758, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34153869

RESUMO

The southern paralysis tick, Ixodes cornuatus, is a tick of veterinary and medical importance in Australia. We use two methods, CLIMEX, and an envelope-model approach which we name the 'climatic-range method' to study the climatic requirements of I. cornuatus and thus to attempt to account for the geographic distribution of I. cornuatus. CLIMEX and our climatic-range method allowed us to account for 94% and 97% of the records of I. cornuatus respectively. We also studied the host preferences of I. cornuatus which we subsequently used in conjunction with our species distribution methods to account for the presence and the absences of I. cornuatus across Australia. Our findings indicate that the actual geographic distribution of I. cornuatus is smaller than the potential geographic range of this tick, and thus, that there are regions in Australia which may be suitable for I. cornuatus where this tick has not been recorded. Although our findings indicate that I. cornuatus might be able to persist in these currently unoccupied regions, our findings also indicate that the potential geographic range of I. cornuatus may shrink by 51 to 76% by 2090, depending on which climate change scenario comes to pass.


Assuntos
Distribuição Animal , Mudança Climática/estatística & dados numéricos , Marsupiais/parasitologia , Modelos Estatísticos , Animais , Austrália , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Humanos , Ixodes , Mamíferos/parasitologia , Paralisia por Carrapato/epidemiologia , Paralisia por Carrapato/veterinária
17.
Ticks Tick Borne Dis ; 12(4): 101688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33652332

RESUMO

Argasid systematics remains controversial with widespread adherence to the Hoogstraal (1985) classification scheme, even though it does not reflect evolutionary relationships and results in paraphyly for the main genera of soft ticks (Argasidae), namely Argas and Ornithodoros. The alternative classification scheme, proposed by Klompen and Oliver (1993), has problems of its own: most notably paraphyly of the subgenus Pavlovskyella and the controversial grouping together of the subgenera Alectorobius, Antricola, Carios, Chiropterargas, Nothoaspis, Parantricola, Reticulinasus and Subparmatus into the genus Carios. Recent phylogenetic analyses of 18S/28S rRNA sequences and mitochondrial genomes agree with the scheme of Klompen and Oliver (1993), with regard to the paraphyly of Pavlovskyella, placement of Alveonasus, Ogadenus, Proknekalia and Secretargas in the Argasinae and placement of Carios and Chiropterargas in the Ornithodorinae (Mans et al., 2019). The Carios clade and its constituent subgenera remain controversial, since the phylogenetic position of its type species Carios (Carios) vespertilionis Latreille, 1796 (formerly Argas vespertilionis) has not been determined with confidence. The current study aimed to resolve Carios sensu lato Klompen and Oliver, 1993, and Carios sensu stricto Hoogstraal, 1985, by determining and analysing phylogenetic nuclear and mitochondrial markers for C. (C.) vespertilionis. Both the nuclear and mitochondrial markers support placement of Carios s.s. within the subfamily Ornithodorinae, but to the exclusion of the clade that includes the 6 other subgenera that are part of Carios s.l. Klompen and Oliver (1993), namely Alectorobius, Antricola, Nothoaspis, Parantricola, Reticulinasus and Subparmatus. These 6 subgenera form a monophyletic clade that might be placed as new subgenera within the genus Alectorobius, or elevated to genera. Given the substantial differences in biology among these subgenera, we propose that these 6 subgenera be elevated to genera. Thus, we propose to modify the classification scheme of Mans et al. (2019) so that the subfamily Argasinae now has six genera, Alveonasus, Argas (subgenera Argas and Persicargas), Navis, Ogadenus, Proknekalia and Secretargas, and the subfamily Ornithodorinae has nine genera, Alectorobius, Antricola (subgenera Antricola and Parantricola), Carios, Chiropterargas, Nothoaspis, Ornithodoros (subgenera Microargas, Ornamentum, Ornithodoros, Pavlovskyella and Theriodoros), Otobius, Reticulinasus and Subparmatus (genera indicated in bold).


Assuntos
Argasidae/classificação , Genoma Mitocondrial , Animais , Argas/classificação , Argas/genética , Argas/crescimento & desenvolvimento , Argasidae/genética , Argasidae/crescimento & desenvolvimento , Feminino , Marcadores Genéticos , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Ornithodoros/classificação , Ornithodoros/genética , Ornithodoros/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 18S/análise , RNA Ribossômico 28S/análise
18.
Int J Parasitol ; 51(4): 241-249, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33513402

RESUMO

The eastern paralysis tick, Ixodes holocyclus, is an ectoparasite of medical and veterinary importance in Australia. The feeding of I. holocyclus is associated with an ascending flaccid paralysis which kills many dogs and cats each year, with the development of mammalian meat allergy in some humans, and with the transmission of Rickettsia australis (Australian scrub typhus) to humans. Although I. holocyclus has been well studied, it is still not known exactly why this tick cannot establish outside of its present geographic distribution. Here, we aim to account for the presence as well as the absence of I. holocyclus in regions of Australia. We modelled the climatic requirements of I. holocyclus with two methods, CLIMEX, and a new envelope-model approach which we name the 'climatic-range method'. These methods allowed us to account for 93% and 96% of the geographic distribution of I. holocyclus, respectively. Our analyses indicated that the geographic range of I. holocyclus may not only shift south towards Melbourne, but may also expand in the future, depending on which climate-change scenario comes to pass.


Assuntos
Doenças do Gato , Doenças do Cão , Ixodes , Animais , Austrália , Gatos , Cães , Hipersensibilidade Alimentar , Paralisia , Rickettsia
19.
Int J Dermatol ; 60(3): 272-280, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32767380

RESUMO

Head louse infestations continue to be a concern of public health in most countries, including the most developed ones. The present recommendations are intended to inform and stress the role and impact of the different authorities, institutions, industry, and the public in the control of head lice in order to reduce the prevalence of this parasite. We encourage health authorities to pursue more effective methods to correctly identify such infestations, and evaluate existing and new pediculicides, medical devices, louse repellents, and louse- and nit-removal remedies. Pediculicides and medical devices must have verifiable claims in the instructions for use and should be tested periodically to document current levels of resistance by lice to the active ingredients and to the formulated products. Where the prevalence of lice is claimed to be epidemic, children should be periodically evaluated objectively to document the actual level of prevalence. Continuing education for health providers and the general population promises to correct misinformation regarding the biology, prevention, and management of lice. Parents should regularly inspect their children for head lice and treat as necessary. Health authorities are encouraged to eliminate policies and practices that rely upon school exclusion as a means to reduce incidence and prevalence, e.g., the 'no-nit' policy which lacks scientific justification, and are counterproductive to the health and welfare of children.


Assuntos
Infestações por Piolhos , Pediculus , Dermatoses do Couro Cabeludo , Animais , Criança , Humanos , Infestações por Piolhos/diagnóstico , Infestações por Piolhos/tratamento farmacológico , Infestações por Piolhos/epidemiologia , Prevalência , Saúde Pública , Dermatoses do Couro Cabeludo/diagnóstico , Dermatoses do Couro Cabeludo/epidemiologia , Dermatoses do Couro Cabeludo/prevenção & controle , Instituições Acadêmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA